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We present a detailed analysis of the modulational instakiiiith) of ground-state bright solitary solutions
of two incoherently coupled nonlinear Scdinger equations. Varying the relative strength of cross-phase and
self-phase effects we show the existence and origin of four branches of Ml of the two-wave solitary solutions.
We give a physical interpretation of our results in terms of the group-velocity-dispers/d-) induced
polarization dynamics of spatial solitary waves. In particular, we show that in media with normal GVD spatial
symmetry breaking changes to polarization symmetry breaking when the relative strength of the cross-phase
modulation exceeds a certain threshold value. The analytical and numerical stability analyses are fully sup-
ported by an extensive series of numerical simulations of the full mg8&D63-651X99)06407-7

PACS numbdrs): 42.65.Tg, 42.65.5f

[. INTRODUCTION tions. Then, if nonlinear coupling is strong enough, Ml of
cws becomes possible for any signs of nonlinearity and GVD
The phenomenon of modulational instabiliiyl) can be [13-20.
defined as self-induced breakup of an initially homogeneous Another important class of solutions of nonlinear equa-
wave during its evolution in a nonlinear medium. Study oftions are solitary solutioné‘solitons™). They may also ex-
this phenomenon was initiated in the 1960s, when MI wadibit Ml if they are localized in some dimensions but ex-
predicted in plasma physidd], nonlinear optic§2], and tended in one or more others. Mis of the envelope solitons of
physics of fluidg 3], and also observed experimentally in the the single NLS and of the KdV solitons were pioneered,
form of filamentation of an optical beam propagating in anrespectively, by Zakharov and RubenchiXl] and by Ka-
organic liquid[4]. Since that time MI has remained as one ofdomtsev and Petviashvilj22]. Later Ml was studied in a
the major topics of theoretical and experimental research imumber of other theoretical and experimental works. For re-
nonlinear physics and, in particular, in nonlinear physics ofviews on Ml of bright and dark solitary waves see, respec-
conservative system$—11]. We will deal below with one tively, [6—10 and[10,11].
classical example of such systems, unifying a number of pre- From a formal point of view the problem of the solitary
vious results, and presenting new M| phenomena. Our apsave MI can be considered as a continuation of the soliton
proach stresses the central role of symmetries. spectrum at zero modulational frequen@Qyinto the region
A general formulation of the problem of nonlinear wave 0 #0. An important class of discrete eigenmoded)at 0
propagation via fundamental sets of equations, such as, fare the zero eigenvalu@r neutral modes, the presence of
example, the Maxwell or Navier-Stokes equations, is a verywhich is directly linked to symmetries of the model equa-
demanding task even for modern computers. Therefore #ions. On a qualitative level, similarities and differences be-
number of simplified models have been introduced whichtween Ml of solitons and cw solutions can be understood on
approximately describe either propagation of the wave itselfthe basis of a comparison between the corresponding neutral
e.g., the Korteweg—de VrigKdV) equation[12], or propa- modes. For example, the one dimensigiid)), bright spatial
gation of a slowly varying wave envelope, e.g., the nonlineasoliton of NLS is modulationally unstable in media with ei-
Schralinger (NLS) equation[12]. ther anomalous or normal GVD. In the first case, the neutral
The simplest solutions of envelope equations are continumode associated with the phase symmetry is excited
ous wave(cw) solutions homogeneous in space and time(“neck” Ml ) and in the latter situation the translational
cws in a single NLS equation exhibit Ml in cases when non-mode associated with a shift along the direction perpendicu-
linearity and group velocity dispersiqi®VD) or diffraction lar to the wave propagation becomes unstatdmake” Ml )
act in opposition, e.g., when nonlinearity is positive GVD [21]. The phase mode is present as well for cw solution and
must be anomalous and if nonlinearity is negative GVD musthis leads to Ml for anomalous GVD. However, the transla-
be normal. This rule changes when, accounting for polarizational mode of the cw solution is null and therefore cws are
tion, for different directions of wave vectors, or for different stable for normal GVD.
carrier frequencies of the interacting waves, one replaces the Increasing the number of free parameters can lead to more
single NLS by the set of incoherently coupled NLS equa-complex scenarios of MI, because coexistence and competi-
tion between different types of instability are likely to hap-
pen. In a recent Lettd23] we considered GVD-induced Ml
*URL:http://cngo.phys.strath.ac.ukdmitry of spatial solitons due to nondegenerate three-wave mixing.
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It was shown that the presence of an additional phase synand g=1+ x{3) /xS, [24], where x3) is the nonlinear
metry leads to the appearance of a new branch of neck Ml iBusceptibility tensor. For examplg=2 for the nonresonant
media with normal GVD. It was found that the novel insta- electronic nonlinearity angg=7 for the nonlinearity due to
bility strongly dominates the usual snake MI throughout themolecular orientatioi24]. For em waves propagating in an
region of soliton existence. Note that, because of this domiisotropic plasma/3 strongly depends on the ratio between
nance, physical mechanisms responsible for the relativehe frequency of the em wave and the characteristic electron
strength of neck and snake instabilities remain to be undefplasma frequency, and it can have either $itffl. Equations
stood. Among others, this last problem is addressed in thel) can also be applied to describe interaction of circularly
present work, where we study MI of the bright solitary solu-polarized waves in waveguides filled with linearly isotropic
tions in the incoherently coupled NLS equations. The incomaterial, such as, e.gGS, liquid [25]; in the opposite situ-
herent nature of the coupling results in the presence of twoation linear coupling betweei; andE, should be incorpo-
phase symmetries. In spite of the similar symmetryrated in the model.
properties, the features of Mi-induced dynamics of solitons Counterpropagation of scalar waves in Kerr media obeys
in the present model appear to be richer compared to thggs. (1) with 8 determined by the wavelength-scale refrac-
three-wave mixing case. In particular, we show that the relative index gratings written by the interference pattgti].
tive strength of the nonlinear cross-coupling governs therhe value ofg in this situation is directly linked with diffu-
competition between neck and snake MIs in media with norsjon which washes out the grating makings B<2 (8=2
mal GVD. for zero diffusion. Envelopes of incoherent copropagating
The rest of this paper is organized as follows. In Sec. I\yaves in Kerr media also obey Eq4) with B=2 [16]. In
we introduce model equations and discuss their physical rethese two situations the group velocity difference of the
evance. In Sec. Il the problem of Ml of the solitary waves isyaye envelopes, which is not explicitly written in Ed4),
formulated in general terms. MI of different kinds of solitary ¢an pe removed by a suitable phase shift.
solutions and its physical interpretation in terms of polariza- The limiting caseB— + o describes a situation with zero
tion dynamics are detailed in Secs. IV and V. Discussion ande|f-modulation effects. This approximates the so-called cas-
summary of main results are presented in Secs. VI and Vligading limit of nondegenerate three-wave mixing in the qua-
dratically nonlinear medid26]. Therefore one can expect

Il. APPLICATIONS OF INCOHERENTLY COUPLED that for large enougiB MI of the solitary solutions of Egs.
NLS EQUATIONS TO PROPAGATION (1) should be equivalent to the Ml of the three-wave solitons
OF ELECTROMAGNETIC WAVES [23] but that it should well be different for the relatively
small 8.

The evolution of two suitably scaled slowly varying inco-
herently coupled wave envelop&s and E, in a weakly
nonlinear, dispersive, and diffractive medium is governed b
the following equation$13]:

Because the discussion of a wide rangefofialues is
more realistic in the context of the interaction of the circu-
>1(:1rly polarized waves, below we mainly use terminology
which is appropriate to this case.

: =2 2
19,E1+ a1V E + y1d7E + (|Eq|?+ B|Eo|)E =0,

(1) I1l. MODULATIONAL INSTABILITY OF SOLITONS.
0 s+ @, F2Ey+ 7, PE gt (|Eyf2+ BIES|D)E,=0, GENERAL FORMULATION OF THE PROBLEM

. . . o The primary target of the present paper is understanding
whereV, =idy+]d,. Longitudinal(z) and transversex(y)  of the instabilities of the ground state, i.e., nodeless, spatially
coordinates are, respectively, measured in units of a suitablgcalized solutions of Egs(1l) under the action of the
diffraction lengthl 4 and of a characteristic transverse size oft-dependent perturbations. These solutions are well known,
the envelope. The coordinatés the retarded time scaled to see, e.9.[27-33 and references therein. Here, we restrict
the parameteT vl ¢/l 4is, WhereT is the temporal duration of ourselves to the situation when the solitary waves are stable
the envelope antl;s is a characteristic GVD length. Diffrac- for 9,=0. Therefore we choosg@>0, because it ensures
tion parameters, , are positive while GVD parameters . apsence of the “splitting” instabilityf30], andV, =id,, to
can have either sign. Rescalingy,t once more one can 4ypid collapsg7,8,34.
always choosex;/a, and |yy|/|y,| to be any convenient |t is important for the following to summarize relevant
constants. The parametg@rmeasures the relative strength of symmetry properties of Eqél) with suppressed time deriva-

cross-phase modulation compared to self-phase modulatiofyes (9,=0). Invariance with respect to the two-parameter
The nonlinearity was chosen to be self-focusing because bgpyge transformation

low we are interested in the dynamics of bright solitary
waves.

Equationg(1) describe a variety of physical situations but
we will focus here on their application to propagation of ) )
electromagnetiqem) waves. Using a circular polarization !eads to conservation of the energi€s ,=[dx|Ey* or
waves in isotropic dielectric materials leads to E¢E), Wlth. respect to transverse translation and Galilean transfor-
where, in such a cas€, andE, are envelopes of the left- mation,
and right- polarized component24]. The diffraction and
GVD parameters can be taken ag,=0.5, y; ,= y=*0.5, E1AX)—E1AX+Xp), (3

(E1,Ep)—(E €'%1,Ee'%2) (2
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E1’2(X)HE1’2(X—vZ)eiU(X_"le). (4) EVPs (11), (12) are adjoint to each other. Therefore they
have identical spectra and in case of instability the imaginary
b1, @2, Xo, andv are free parameters. Although we useand real parts of perturbations grow with the same rates. To
below the fact of the presence of the translational and Galanswer the stability question it is thus enough to study only
ilean symmetries, we do not need explicit expressions for thene of the EVPs, and we concentrate below on the EMJP.
associated integrals of motion, which are linear momentum Let us suppose thatk{ ,+ yQZ)=§1’220. Then, gener-

and “center of mass,” see, e.d9]. ally, )\Ze(—oc,—)\g) is a continuous part of the spectrum
Symmetry property2) indicates that the solitary solutions with unbounded eigenfunctions, whekg=min(¢;,£,). For
can be presented in the form particular cases wheri; becomes a diagonal operator the

continuum splits into two independent bands,OQ,—gig),
corresponding to the unboundednesswg{x) and w,(x),
respectively. Eigenvalues which do not belong to the con-
tinuum constitute the discrete part of the spectrum and have
bounded eigenfunctions. Stable eigenmodes with eigenval-
1, ) ) ues obeying—)\é<)\2<0 are called “gap modes.” Any
EaxAl,ZZ K1 A1 2~ (AT 2+ BAS DA . (6) other mode of the discrete spectrum, i.e., any eigenmode
with A% complex or positive, renders the soliton unstable. If
£1<0 and/or¢,<0, the gap is closedy;=0.

E1a(X,2)=Ap o(X)€ 12, (5)

A (x) are real functions obeying the system of ordinary
differential equations

Exponential localization of the solitons requireg,>0. Ac- The procedure which we mainlv follow to studv stabilit
tually one of these parameters can always be scaled awagf P y Y y

which means that fixing one of them and varying the other in differe_nt types of solitz_iry solutions co_nsists of three b_asic
the whole region of the solitary wave existence one will cap-s.teps' F|rst, using analytical and numerical analysis we iden-
ture all possible situations. However, for convenience of anallly the discrete spectrum of EVRL2) for = O.' Second, we
lytical calculations it is better to keep them both. develop perturbation theory for the neutral eigenmodes in the
To study MI we seek solutions of E€1) in the form of low-frequency limit,Q0 << 1. Third, we numerically build con-

spatial solitons weakly modulated in time at frequersey tinug_tions of all discrete eigenvalue_s into the_: region_of finite
positive (). We also allow for possible splitting of discrete

=0, ) . .
eigenvalues from the edge of the continuum, but this was
E1AX,2)={A; AX)+[U1 AX,2) never actually observed.
+iWy Ax,2)]cosQt}el #1412 (7) IV. INSTABILITIES OF CIRCULARLY POLARIZED

. . . . AND MANAKOV SOLITONS
Presenting a solution of the linearized real system for the

small perturbations) ,,,W,, in the formU,~u,(x)e*? and The single-wave solitons of Eq%6) corresponding to
W~ W (X)eM we obtain the following eigenvalue problem right- and left-circular-polarized em waves are
(EVP):

A1(X)=+2k;sech/2k1x, A,=0, (13
Li+yQ%)u=—w,
(Laty @® Ar=0, A,(X)=12r,sech/2xx. (14)
(Lo+yQ2hw=1u, For these solutions, EVRL2) separates into two independent

. ;- . " . _ scalar problems. Considering, for example, the stability of a
WhereuA=(ul,lﬂz) , W=(Wy,W5) ", andl is the identity op-  soliton with A; #0 we get

erator.Ly and £, are

My (No+ y0Hwi=—Nw;, (19
D, 0 ,
Lo= E 9 1, 2 2 N
0 DZ _§0X+K2+ 'yQ _IBA]_ Wz—_)\ W2, (16)
B B, —2BAA; whereNg=— 292+ k,— A2, Ni=— 392+ k;—3A2.
L= —2BAA, B, ’ (10 The operator on the left-hand side of E§6) has a non-

negative spectrum therefore corresponding valuesﬁo(n
=0,1,2,3...) must be nonpositive, which means the ab-
sence of the unstable eigenmodes. In fact eigenvalue prob-
Iiem (16) can be solved analytically, see, e.[28,35. The
eigenvalues are

where Dy ,=— 302+ k1~ A ,— BAS, and By,—— 304
+ K12~ 3A% ;~ BAS ;.

By means of simple transformation one can reduce EV
(8) to the following two EVPs for real and imaginary parts of
the perturbations: s 2
. . o ) N2=—| K+ yQ2— Z[‘/83+ 1-2n—112| . (17
(Lo+ yQ2)(L1+ yQ%)u=— 220, (11

. o o R Equation(15) is exactly an EVP arising in the theory of
(L1+vQ2)(Lo+ yQ2T)w= —\2w. (120 Ml of solitons in a single NLS equation and details of its
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analytical and numerical investigations can be found in L LR

neutral eigenmodes which can be readily identified by apply-
ing infinitesimal phase and Galilean transforms to solitary
wave solution. These modes ang 4, =Aq and wy, =XxA.

Infinitesimal translations and variations &f generate two

[6,8,21]. For the sake of completeness and comparison with 15? i
Ml of the other types of solutions we summarize the main
results here.

The discrete spectrum of operat&flj% consists of two ; 0’

growth rate

neutrally stable modes of the adjoint operafdgA/; which 051 ) i
areu,= dyA; andu1K1= e A1 These modes obey the iden- I i
tities N0W1¢1: O, Nole: —Uqy, N1U1K1: _W1¢1, Nlulx : /,,,,' ]
=0. ooV v
Following [21] we assume?<1 and substitute the 00 05 10 15 20 25
asymptotic expansions Q
Wl:(\,\/(10)+92W(11)+ ) (18) FIG. 1. Instability growth rates of the circularly polarized soli-

ton vsQ), k;=1. Solid(dotted-dashedine is for neck(snake M,
and v=0.5 (y=-0.5).
A2=02(\124 02\ (24 ... (199 Ml does not disappear stepwise at the point where the gap is
o closed Q4= —«1/7y, as was suggested in Rg8J, but con-
into Eq. (15). In the first two orders we hav& Apw(®=0  tinues beyond this point and probably reachés 0 at some
and VG NgwH = — \D2W O — (A + A )w®. The solution  largerQ. _
in leading order i3W(10):C¢1W1¢1+ C,wy,, whereC, , C, The nonlinear stage of Ml is also perfectly analogous to
that in the single NLS. Filaments, formed as the result of the

. neck MI development, collapse to a singularity during fur-
=(Wy, ,Uy,,)=0 (here and belowf,g) ==,/ dxfngm) re-  ther propagationi7,8]. The snake MI leads to soliton spread-
sult in the independence of the branches produced by thé@g due to unbalanced action of the self-focusing nonlinear-
phase and Galilean neutral modes. TherefogeandC, are ity and normal GVD[8]. The second field, is not affected

in fact independent constants. The solvability condition ofdy the discussed instabilities, because of the incoherent na-

are constants. Orthogonality properties{wml,ulX)

the first order problem gives ture of the coupling betweels; andE,.
In the special cas@=1, a;=a,, and y;=1vy, Eqgs.(1)
N Q, are invariant under the arbitrary rotations in the, (E,)
)\251)2227/(9 Q1=47K1, (200 plane, E; ,—COSYE, ,=SiNYE, ;. This leads to a new pa-
K1

rametrization of the ground-state solitons. These are usually

(UpUz) 4 called Manakov soliton§36] and they are given by the so-
AD2— 23,% =~ 3 VK1 (21  lutions of Eqgs.(6) with «;,= k:
Equations(20), (21) indicate onset of instability for either A1=COSOA(X),  Ap=SINOA(X). (22
sign of v. However, the character of the instability depends
on the sign ofy. For anomalous GVD 4>0) the spatially Here the angled is a new free parameter characterizing the
symmetric eigenmode becomes unstable, leading to clustepolarization angle, and\(x)= J2ksech/2kx. Because of
ing of the soliton stripe into filament®eck MI). For normal  the rotational invariance, Manakov solitons with different
GVD (y<0) an excitation of the antisymmetric eigenmode polarizations are equivalent and their Ml is indepent of the
leads to spatial symmetry breaking and bending of the solipolarization angle. Therefore one can always &et0, and
tary stripe along the temporal coording®nake M). The then the corresponding EVP coincides with EG), (16).
period of the modulations is approximately equal to
2/ Qmax, WhereQpmgyis the maximally unstable frequency. |\ <rag) TIES OF LINEARLY AND ELLIPTICALLY

Typical dependencies of the Ml growth rates fsare POLARIZED SOLITONS (8+1)

presented in Fig. 1. The neck instability disappearﬂg}

- /3K1/y where w;=0 and u1=secﬁ\/2_x1x. For Q A. Soliton family and associated neutral modes

>0, the corresponding eigenmode becomes a gap mode. To study solitons of an arbitrary polarization f@# 1,
Note that fory>0 the gap becomes wider with increasing ofi.e., A;#0 and A,#0, it is more convenient to introduce
Q. The snake instability disappearance is very difficult toabsolute, ¢=3(¢1+¢,), and relative, y=3(d1— ¢,),
track numerically because the corresponding eigenmode dghases. The corresponding integrals of motion are the total
velops oscillating tails and becomes weakly localized, so thagnergy Q=Q;+Q, and energy unbalanc®,=Q;—Q,.

a larger number of grid points is required. However, ourAssociated soliton parameters are=3(x;+«,) and &
numerical analysis clearly indicates that the branch of snake= 3 (x1— x3).
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2 =a,(A;,A)". These six modes obey the following identities:
Low,=0, Low,=0, LoW,=—Uy, L1U,=—W,, LiUs=
» —Wi,, 240,=0.
2r 1 For B=0 Egs. (1) separate into two independent NLS
equations. The independence of the two fields results in ad-
ditional translational and Galilean symmetries characterizing
S of | freedom of the relative transverse translation and motion of
the two waves. Therefore EVR41) and (12) have addi-
tional neutral modesUs=dy(A;,—A)T, Ws=x(A;,
I —A,)". As numerical solution for & 8<1 shows, the cor-
27 i responding eigenvalue produces a stable branch of the dis-
I B=0.6 crete spectrum. FofB|<1 an approximate expression for
B=0.1 this eigenvalue can be readily foun{9,30Q, )\f;vz
4L - T R E— —648/15. Excitation of the corresponding eigenmode results
-1.0 0.5 0.0 05 1.0 in position oscillations of the soliton upon its propagation
5 [31]. When B—1 this eigenmode disappears into the con-
FIG. 2. Energy unbalancin@, vs &, k=1. tinuum [31].
For =0 there is an obvious and well known analytical B. Asymptotic stability analysis (2?<1)
solution of Egs(6) [9,28-33, Now assuming thap3>? we can use the asymptotic
techniques described in the preceding section to continue
2k - . . .
A; AX)=A(X)= | —sech/2xx, (23)  zero-eigenvalue modes into the regirf<1. Making sub-
' 1+p stitutions
corresponding to a linearly polarized soliton. Using numeri- w= (WO + 02w+ .. .) (25)

cal solution of Eq(6) one can verify that foB+ 1 the exact
solution (23) belongs to the family of the solitary solutions and of Eq.(19) into Eq. (12) we get in the first two orders
parametrized by and 5. L1LoW =0 and £, Low P = — \D2AO) — (2 + L)W,

Using Eq.(17) for =0, =0 and its analog for the go|ytion in the leading order isW(®=C w,+CaW;
solution(14) we conclude that for fixed values @fandg, a
family of ground-state coupled solitary solutions of E(.
exists forse (— 6.,6;), where

+C,w, . As in the preceding subsection one can show that
the branches produced by the two-phase modes on the one
hand and by the Galilean mode on the other are independent.
The solvability condition of the first order problem for the

1-4B+V1+8p Galilean mode gives
=k . (29
3+4B8—-1+8B - o
(L2_ (Uy, Uy)
. . N E= =2y ———, (26)
Analogs of Eqs(24) have been derived before in a number Q

of papers using different methods, see, €.8,27,33. Ex- S _ -

pression under the modulus in E84) changes its sign from Which implies snake instability fory<0. When §=0,
plus to minus oncg changes fronB<1 to >1. Itfollows ~ A{V2=—4y«/3, cf. Eq.(21).

that for <1 the family of the elliptically polarized solitons ~ For the two-phase modes the solvability condition results
splits from the familyA,=0 (A,=0) of the circularly po- in a quadratic equation for(*)?,

larized ones ab= 6. (6=— ;) and this is vice versa for (1)4 (1)2

B>1. Continuous variation o from — &, to & for fixed an™ b+ e=0, (27)

and B<1 (B>1) results in monotonic decay @, (Q1)

from its maximal valueQ, (Q_) down to zero and in Where

growth of Q4 (Q,) from zero up toQ, (Q_), whereQ.

=2y2(k=* 8.). Therefore, we can make an important point 48=0,QudQ=3Q7:Qu,
for the following discussion: fog<1, d;Q,>0 and forg
>1, d,Q,<0. Numerically built dependencies @, vs & 2b=7vQ(4,Q+ d5Qu) ~ ¥Qu(9.Qu+ 95Q),
for different values of3 are presented in Fig. 2.
Consider now the main spectral properties of the ellipti- c=-49°Q:Q,.

cally polarized solitons fof)=0 and 8#0,1. Phase and ) )
Galilean symmetries generate three neutral eigenmodes &forresponding values &, andC,, are linked through the

the EVP (12, they arew,=(A;,Ap)", W,=(A,,—Ay)T,  eauality

andvT/U=x(A1,A2)T. Infinitesimal variations ok and &, and N (1)2
translational symmetry generate neutral modes of the adjoint & - M
problem (11): U,=d.(A1,A,)T, Us=ds(A1,A.)T, and Uy Cy A129,Q-24Q,’
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where \()2 is the corresponding root of Eq27). In the x x

general case expressions for the roots of @§) cannot be FIG. 4. Instability growth rates, spatial profiles of the solitary
analyzed analytically, but it is already clear that four sym-qgiutions and of the unstable eigenmodes Bx1, y=—0.5.
metric neck type eigenmodes exist and either two or all ofpashed-dotteddash-dot-dot-datlines correspond to the in-phase
them may be responsible for instability. (antiphasg snake MI.(a) Growth rates v}, 8=0.3. Thin (thick)

If §=0 then(w,,uz=(w,,u,)=0 and thereforew, lines correspond toc=1, =0, Q=4.04, Q,=0 (x=1.155, &
and w,, eigenmodes produce independent branches of thg 0-5, Q=4.04, Q,=2.18). (b) Maximal growth rate vs8. Thin
discrete spectrum. This results in independence betgeen (MK "ndes CorreSpong.ms:O (r:a‘:_o.s)r.](c) Comﬁonems of the
andC, and simplifies formulas for the associated eigenval-?%er;;n_ole corresponding to the in-phase snake BA#0.3,
ues: =0,Q= . (d) Components of the eigenmode corresponding to the

antiphase snake Mj3=0.3, §=0, 1=0.92.

)\fpl)2=27m=4y;<, (29 instabilities discussed in the preceding subsection, a fourth
“ MI associated with continuation Oi/(gv into the region of
o) B#0, Q+#0 also_ exists. Ane_llytical treatment of this insta-
A$)2=2ya 0 =2vykf(B). (29 bility is also possible, but it will not be pursued here, because
g<u the corresponding MI branch is never dominant.
Here f(8)=[ [ sechxg(x,8)dx]"* and functiong obeys Let us first discuss in general terms the physical meaning

[52—142(3— B)/(1+ B)sechx]g=sechx. f(B) changes of all the different types of the instabilities in the simple
X - .

its sian f lus to mi h th h unit situation with zero imbalancingd=0), and only then will
IS Sign from plus to minus w ed passes rougnh uni (yl,)zsee we proceed with details of the numerical analysis.
Fig. 3. Alternatively, Eq.(29) can be rewritten as\,

=2vyQ,/95Q,, cf. Eq.(4) in [23].

The)\fpl)2 eigenvalue and associated neutral mm?;;eare .
linked to the symmetry in the absolute phaseand have All eigenmodes of the EVR12) are two-component vec-
their analogies in the spectral problem for single-wave solifors, whose first and second components are responsible for
tons described in the preceding section, see (6. The the spatial form of modulations of the fields, and E,

A2 eigenvalue and neutral modte, are novel. They can respectively. The eigenmodes, andw, corresponding to

be directly attributed to the symmetry in the differential the variations of the absolute phageand of the absolute
phasey. This branch of the discrete spectrum generates invelocity v of the coupled solitons have first and second com-
stability for normal GVD ¢/<0) if 3>1 and for anomalous Pponents which are in phase for any valuexoThis property
GVD if B<1, see Figs. 4, 6. Thus, the asymptotic analysigholds throughout the whole region of existence of the asso-
indicates that for8>1, y<0 neck and snake instabilities ciated branches of the discrete spectrum. Therefore an exci-
coexist, and forg<1, y>0 two different types of neck tation of these eigenmodes is not accompanied by the break-
instability coexist. Numerical evaluation of the roots of Eq.ing of the polarization of the initial state. In contrast, the
(27) shows that the same conclusions hold also #sr0,  eigenmodes linked witlw,, and w, neutral modes, or in
throughout the whole existence region of the family of ellip- other words with variations of the relative phageand the
tically polarized solitons. Solving the EVR2) numerically,  relative velocity v, have antiphased first and second com-
we find that in the low-frequency limit the instability growth ponents. Therefore their excitation does lead to polarization
rates match those predicted by our perturbation theory withisymmetry breaking. In particular, one should expect that de-
a few percent up td2=0.5. Numerical investigatiorffor  stabilization of the eigenmode associated with the relative
more details see belgvalso shows that apart from the three phaseys will result in breaking of the linearly polarized soli-

C. Instability-induced polarization dynamics
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FIG. 5. Elgenvglues corresponding to the antiphase snake Ml vs 00 o o I o0 " 5 3
Q) for several choices o8: k=1, §=0, y=—0.5. Q x

L . . . FIG. 6. Instability growth rates, spatial profiles of the solitar
ton stripe into a chain of circularly polarized clusters, where vy P P y

iahbori | h teft and riah \ari solutions and of the unstable eigenfunctions g»1, y=—0.5.
'?e'g oring clusters av_e opposite _an ng )_ polariza- ash-dot(dash) lines correspond to in-phase snaketiphase negk
tions. The same conclusions are obviously valid for the re

’ Is. (@) Growth rates v€), g=2. Thin (thick) lines correspond to
parts of the perturbations. o _ k=1, =0, Q=1.75, Q,=0 (k=0.93, 5=0.2, Q=1.75, Q,=
Note here, that by direct substitution of the linearly polar- _ ¢ 91). () Components of the eigenmode corresponding to in-
ized solution Eq(23) into the EVPY11), (12) one can easily  phase snake MIB=2, §=0.2, Q=0.8. (c) Growth rates v,
show that the eigenvalues of the eigenmodes with in-phasg=7. Thin (thick) lines correspond ta=1, §=0, Q=0.68, Q,

first and second components are independenBofThis =0 (x=0.97, §=0.2, Q=0.68, Q,~—0.16).(d) Components of
means physically that in-phase Ml is insensitive to the relathe eigenmode corresponding to antiphase neck BH7, &
tive strength of self- and cross-phase modulations. =0.2,0=1.

D. Numerical results for normal GVD (y<0) frequency limit starting fromB=3.55. Numerical stability

We start a description of our numerical results with dis-analysis gives thgBs,=3.47 at() =, for 6=0. Introduc-

cussion of the normal GVD case. We found two snake instal"d imbalancing always leads to the suppression of both in-
bilities for B<1, see Fig. 4. One of them corresponds to thestabilities, see Figs.(8), 6(c), and 7. Therefor¢he circular-
in-phase snaking of both fields, see Figc)4and its growth ~ Polarized soliton is most stable for a given energy.
rate in the low-frequency limit is given by E@26). The In analogy with Ml of circularly polarized _solltons for
other one corresponds to the antiphase snaking, see(Bjg. 4 Normal GVD, the neck and snake unstable eigenmodes be-
Examples of the growth rate dependenciesvand details COmMe weakly confined and develop oscillating tails (as
of the antiphase snaking appearance are presented in Fig.
4(a) and Fig. 5, respectively. Dependencies of the maximal [T
instability growth rates o8 are presented in Fig.(d). We
found that in-phase snaking dominates antiphase snaking for I e ]
all values of§ and 8. For =1 the antiphase snake mode i e
disappears inside the continuum and does not appear again
for all B>1.

The dominant role of the in-phase snake instability means
that breaking of the polarization state imposed by the initial
conditions is unlikely to happen upon propagation. Introduc-
ing imbalancing for a fixed total energy enhances this domi-
nance, see Fig.(d). Thus, wherB<1, the linearly polarized
solitons are more stable than any other state of polarization.

The antiphase neck MI associated with the relative phase
 appears fopp>1, see Eq(29) and Fig. &b). The in-phase
snake instability obviously also exists, see E2f) and Figs. 00
6(c) and &d). The in-phase snake MI dominates the an- 2 4 ¢ ‘I’; 10 1z H
tiphase neck for & B8< B, and vice versa foB> Bs,, see
Fig. 7, where the cross-over valyk, depends weakly on. FIG. 7. Maximal growth rates of the in-phase snddashed-
This fact can also be seen from the comparison of the pefdotted ling and the antiphase ne¢dashed ling Mis vs g for B
turbative results fois=0. According to Eqs(28), (29) and  >1, y=-0.5. Thin (thick) lines correspond ta5=0 (5=0.5).
Fig. 7 the neck instability dominates the snake in the low-Cross-over occurs @=3.47 for =0 andBs,~4.04 for §5=0.5.
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o 5 10 15 20 25
t

FIG. 8. Development of the in-phase snake Ml 82, « =
=1, 6=0, y=—-0.5. (g, |E1d for z=12; (b, |E; 4 for z
=14.7.

increases beyond the point where the gap is closge,0.

To test our linear stability analysis and study the nonlin-
ear evolution we performed a series of computer simulations =
of Egs. (1) with initial conditions in the form of a soliton
stripe perturbed by spatiotemporal white noise of the order of
a few percent. Typical simulation results are presented in o 5 10 15 20 25
Figs. 8—,10. FoB< B, we observed in-phase snaking of the t
stripe along the temporal dimension, see Fig. 8. BorSBq, i
the soliton stripe breaks in such a way as to form the inter- ~'C- 9. Development of the antiphase neck MI i8r=7, «
leaved intensity peaks &, andE,, see Fig. 9, as expected _ +» 9=0» ¥=-05. (32 [Ed for z=8.4; (b)) |Eyd for z

when the out-of-phase neck Ml is dominant. The spatiotem-: 10.2; (q,) [E, 4 for 2=12.6.

poral patterns formed at the initial stage of Ml finally spread;,e in-phase MI and to the suppression of the antiphase one,
because pf the unbalqnced action of the normal GVD andege Figs. 1(8) and 11b). For 8>1 only in-phase instability
self-focusing nonlinearity. FoB= s, we observed compe- eyists, but now imbalancing leads to the suppression of the
tition between the neck and snake Mls, see Fig. 10. In Fig§nstability, see Fig. 12. Presence of these instabilities agrees
10(by,) and 10() one can clearly see that at the intermedi-ith the predictions of low-frequency analysis, see Eg8),
ate stage of MI the typical in-phase snake pattern is supef2g) and Figs. 2, 3. A typical result of the numerical simu-
imposed on the antiphase qeck pattern. lation of the neck instability development is shown in Fig.
Thus, we conclude that in the media with normal GVD 13 Note that the numerically attainable propagation distance
spatial soliton stripes perfectly develop snake MI withoutyas jimited by the distance at which the most intense fila-
polarization symmetry breaking e (0,8s) and neck Ml ments formed at the initial stage of MI collapse to singulari-

with polarization symmetry breaking B e (B, + ). ties.
Cutoff frequencies where the neck MiIs disappear
E. Numerical results for anomalous GVD(y>0) can be found analytically ford=0. Growth rate of the

There are two neck Mis in this case 8,1, see Fig. 11. In-phase MI becomes zero &= y3«/y in full analogy
One of them is associated with the absolute phasand with the single NLS equation, see Sec. IV. 'Ehe antiphase
corresponds to the in-phase neck MI. The other one is ass®4l disappears at)?=x(D—B)/(2y) having w=0 and
ciated with the relative phas¢ and corresponds to the an- uj ,=(sech/2«kx)(®~1’2 here D=(11-58)/(1+8), B
tiphase neck MI. The in-phase MI dominates the antiphase- \/(25—78)/(1+ ).
one for any value ob and 3, which means conservation of  Thus, in the media with anomalous GVD the spatial soli-
the polarization state imposed by the initial conditions. Non-ton stripe always develops neck MI without polarization
zero imbalancing for fixed total energy leads to the growth olsymmetry breaking and filamentary structure formed during
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this process collapses upon propagation. Detailed study of
collapse in coupled NLS equations is outside the scope of
this paper. Some details on this issue can be fourj@4h

VI. DISCUSSION

It is interesting to compare MI of solitons with results on
MI of cws [13], which can be easily recovered from E(®),
(11), (12) settingg2=0. For simplicity we again consider the
case of the linear polarizatiolt; ,= JVkl(1+ B)e'*?. Then

FIG. 10. Competition between the in-phase snake and antiphasgrresponding eigenvalues ave’=y0?(2x—yQ?) and

neck Mis: 8=3.47, k=1, =0, y=—0.5. () |E14 for z=9;

(bl,Z) |E1'2| fOI’ z=12.

growth rate

FIG. 11. Instability growth rates, spatial profiles of the solitary
solutions and of the unstable eigenfunctionsger 1, y=0.5. Full
(dash lines correspond to in-phas@ntiphasg neck Mils. (a)
Growth rates vs(), B=0.3. Thin (thick) lines correspond toc
=1, 6=0, Q=4.04, Q,=0 (xk=1.155, §=0.5, Q=4.04, Q,
=2.18). (b) Maximal growth rate vs8. Thin (thick) lines corre-
spond to5=0 (5=0.5). (c) Components of the eigenmode corre-
sponding to in-phase snake M3=0.3, =0, (1=1.5. (d) Com-
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\2=y02[2k(1- B)/(1+ B)— yO]. For normal GVDA?
can be positive only for3>1. For anomalous GVDA;,
generates instability for ang and )\5, only for 8<1. Thus,

as one could expect, neck instabilities of solitons related to
the phase symmetries have analogies for cws. Snake insta-
bilities are obviously absent for cws, which is the main dif-
ference between the dynamics of spatially confined solitons
and infinitely extended cws. Namely, in the case of normal
GVD, cws are modulationally stable f@@<1 and unstable

for B>1 (demonstrating polarization symmetry breaking
Solitons are snake unstable in this situation for ghwand

this instability does not involve changes in the polarization
state. However, starting from a critical value gt B, the
snake instability becomes suppressed by the neck one, which
is analogous to instability of cw. This instability does lead to
polarization symmetry breaking. In particular, a linearly po-
larized soliton breaks, due to this instability, into the chain of
circularly polarized clusters. Because snake instability leads

(ay)

0o 5 10 15 20 25

FIG. 13. Development of the in-phase neck MI 62, «

ponets of the eigenmode corresponding to antiphase snak@ Ml, =1, =0, y=0.5. (a) |E; 4 for z=4.6. With further increasing
=0.3,6=0, Q=0.9.

of zmost intense filaments develop collapse.
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to spatial symmetry breaking and neck MI does not, the N yQ2
change in Ml of solitons ag= B, can be interpreted a& Aph=———, Qsh:T'
transition from spatial symmetry breaking to polarization 4kwk 2kK'w”k

symmetry breaking. . . i
In the limit situation 3>1 self-phase effects are negli- He_re)\ph and ), are the !nstabl!ny_ growth rate and m_odu

: lational frequency in physical unitk,is the wave vectony is
gible compared to cross-phase ones and development of ttgﬁ: b idthk” = 02k d th i
in-phase and antiphase neck MIs can be qualitatively ex- ', Doam Wi —JypK. K andy are the same parameters
which have been used throughout the text. For example, for

plained using Fermat's principle. Due to Ml development the diati 2 | |
effective refractive index foE; and E, fields gets modu- ra_latlolp at 1“_@3 propagating in an AG_aAs planar wave-
guide k"= —10"2% &/m [38] and for typical soliton trans-

lated through theXPM mechanism with period 2/Q - verse sizew—50 um [39] we geth—\/(xX5 cm) and
\ p

This results in temporal cross-defocusing of filaments in me-'~, > 25 2 : _ -
dia with normal GVD and in cross-focusing for anomalouspn="/(xx 10 ). For experiments with fused silica

GVD. Thus, in the case of normal GVD, an interleaved pat-3t wazxgelength 830 nm, see secz%nd of R7], k"=
tern of the intensity peaks €, and E, fields should be —107?°s/m andQg=0%(xx 10 *%).

preferable because it enables each field to “see” a refractive

index that increases to its peak, i.e., one that is in accord with VII. SUMMARY

Fermat's principle. This is clearly verified in Fig. 9. The

same arguments lead to the conclusion that a pattern with Ej“les of nodeless spatial solitons in the system of the two

intensity peaks coincident is preferable for anomalous GVDincoherentIy coupled NLS equations. Considering coupled

Con§|der|ng the possibility of experimental obs‘?rV""t'c.isoliton states, we have established the existence of the four
of predicted phenomena, we have to say that a diffraction

induced M of solitonlike stripe, which is formally equiva- branches of instabilities, which are linked to the symmetries

We have analyzed and described dispersive MI of fami-

cause it iS. perfectly analogou; to Mi of cws anq it is n.Otnamics. In particular we found that in media with normal
accompanied by any polarization effects. More interesting~\ /5 the Mi-induced spatial symmetry breaking in the trans-

dy”am'cs is expected n media with norma! GVD' In fact, verse plane changes to the polarization symmetry breaking
experimental observation of temporal splitting induced bywhen the relative strength of the cross-phase modulation ex-

”Om?a' GVD of spatially confined pulses in a self-focusing ceeds a certain threshold value. In media with anomalous
medium was _recently reportgd 7). HOV\_/ever, transverse GVD, MI results in breaking of spatial solitons into spa-
and polarization effects, which, according to our reSU|ts’tiotemporaI clusters which collapse upon further propaga-

shoulq pla%/ En |mpprt<|31n: rdqleé7were notts(tju;med dunr;gﬂ;tm ion. This is not followed by either spatial or polarization
experiment. Numerical studi¢87] presented to support the symmetry breaking.

experimental results were restricted by scalar approximation
and radial geometry.

The rescaled instability growth rakeas a function of the
modulational frequency) can be related to physical units D.V.S. acknowledges financial support from the Royal
using the formulas Society of Edinburgh and British Petroleum.
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