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Modulational instability of bright solitary waves in incoherently
coupled nonlinear Schrödinger equations

Dmitry V. Skryabin* and William J. Firth
Department of Physics and Applied Physics, John Anderson Building, University of Strathclyde,

107 Rottenrow, Glasgow G4 0NG, Scotland
~Received 5 October 1998!

We present a detailed analysis of the modulational instability~MI ! of ground-state bright solitary solutions
of two incoherently coupled nonlinear Schro¨dinger equations. Varying the relative strength of cross-phase and
self-phase effects we show the existence and origin of four branches of MI of the two-wave solitary solutions.
We give a physical interpretation of our results in terms of the group-velocity-dispersion-~GVD-! induced
polarization dynamics of spatial solitary waves. In particular, we show that in media with normal GVD spatial
symmetry breaking changes to polarization symmetry breaking when the relative strength of the cross-phase
modulation exceeds a certain threshold value. The analytical and numerical stability analyses are fully sup-
ported by an extensive series of numerical simulations of the full model.@S1063-651X~99!06407-7#

PACS number~s!: 42.65.Tg, 42.65.Sf
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I. INTRODUCTION

The phenomenon of modulational instability~MI ! can be
defined as self-induced breakup of an initially homogene
wave during its evolution in a nonlinear medium. Study
this phenomenon was initiated in the 1960s, when MI w
predicted in plasma physics@1#, nonlinear optics@2#, and
physics of fluids@3#, and also observed experimentally in th
form of filamentation of an optical beam propagating in
organic liquid@4#. Since that time MI has remained as one
the major topics of theoretical and experimental researc
nonlinear physics and, in particular, in nonlinear physics
conservative systems@5–11#. We will deal below with one
classical example of such systems, unifying a number of p
vious results, and presenting new MI phenomena. Our
proach stresses the central role of symmetries.

A general formulation of the problem of nonlinear wa
propagation via fundamental sets of equations, such as
example, the Maxwell or Navier-Stokes equations, is a v
demanding task even for modern computers. Therefor
number of simplified models have been introduced wh
approximately describe either propagation of the wave its
e.g., the Korteweg–de Vries~KdV! equation@12#, or propa-
gation of a slowly varying wave envelope, e.g., the nonlin
Schrödinger ~NLS! equation@12#.

The simplest solutions of envelope equations are cont
ous wave~cw! solutions homogeneous in space and tim
cws in a single NLS equation exhibit MI in cases when no
linearity and group velocity dispersion~GVD! or diffraction
act in opposition, e.g., when nonlinearity is positive GV
must be anomalous and if nonlinearity is negative GVD m
be normal. This rule changes when, accounting for polar
tion, for different directions of wave vectors, or for differe
carrier frequencies of the interacting waves, one replaces
single NLS by the set of incoherently coupled NLS equ
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tions. Then, if nonlinear coupling is strong enough, MI
cws becomes possible for any signs of nonlinearity and G
@13–20#.

Another important class of solutions of nonlinear equ
tions are solitary solutions~‘‘solitons’’ !. They may also ex-
hibit MI if they are localized in some dimensions but e
tended in one or more others. MIs of the envelope soliton
the single NLS and of the KdV solitons were pioneere
respectively, by Zakharov and Rubenchik@21# and by Ka-
domtsev and Petviashvily@22#. Later MI was studied in a
number of other theoretical and experimental works. For
views on MI of bright and dark solitary waves see, resp
tively, @6–10# and @10,11#.

From a formal point of view the problem of the solitar
wave MI can be considered as a continuation of the soli
spectrum at zero modulational frequencyV into the region
VÞ0. An important class of discrete eigenmodes atV50
are the zero eigenvalue~or neutral! modes, the presence o
which is directly linked to symmetries of the model equ
tions. On a qualitative level, similarities and differences b
tween MI of solitons and cw solutions can be understood
the basis of a comparison between the corresponding ne
modes. For example, the one dimensional~1D!, bright spatial
soliton of NLS is modulationally unstable in media with e
ther anomalous or normal GVD. In the first case, the neu
mode associated with the phase symmetry is exc
~‘‘neck’’ MI ! and in the latter situation the translation
mode associated with a shift along the direction perpend
lar to the wave propagation becomes unstable~‘‘snake’’ MI !
@21#. The phase mode is present as well for cw solution a
this leads to MI for anomalous GVD. However, the trans
tional mode of the cw solution is null and therefore cws a
stable for normal GVD.

Increasing the number of free parameters can lead to m
complex scenarios of MI, because coexistence and comp
tion between different types of instability are likely to ha
pen. In a recent Letter@23# we considered GVD-induced M
of spatial solitons due to nondegenerate three-wave mix
1019 ©1999 The American Physical Society
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1020 PRE 60DMITRY V. SKRYABIN AND WILLIAM J. FIRTH
It was shown that the presence of an additional phase s
metry leads to the appearance of a new branch of neck M
media with normal GVD. It was found that the novel inst
bility strongly dominates the usual snake MI throughout
region of soliton existence. Note that, because of this do
nance, physical mechanisms responsible for the rela
strength of neck and snake instabilities remain to be un
stood. Among others, this last problem is addressed in
present work, where we study MI of the bright solitary so
tions in the incoherently coupled NLS equations. The in
herent nature of the coupling results in the presence of t
phase symmetries. In spite of the similar symme
properties, the features of MI-induced dynamics of solito
in the present model appear to be richer compared to
three-wave mixing case. In particular, we show that the re
tive strength of the nonlinear cross-coupling governs
competition between neck and snake MIs in media with n
mal GVD.

The rest of this paper is organized as follows. In Sec
we introduce model equations and discuss their physical
evance. In Sec. III the problem of MI of the solitary waves
formulated in general terms. MI of different kinds of solita
solutions and its physical interpretation in terms of polari
tion dynamics are detailed in Secs. IV and V. Discussion
summary of main results are presented in Secs. VI and

II. APPLICATIONS OF INCOHERENTLY COUPLED
NLS EQUATIONS TO PROPAGATION

OF ELECTROMAGNETIC WAVES

The evolution of two suitably scaled slowly varying inc
herently coupled wave envelopesE1 and E2 in a weakly
nonlinear, dispersive, and diffractive medium is governed
the following equations@13#:

i ]zE11a1¹W '
2 E11g1] t

2E11~ uE1u21buE2u2!E150,
~1!

i ]zE21a2¹W '
2 E21g2] t

2E21~ uE2u21buE1u2!E250,

where¹W '5 iW]x1 jW]y . Longitudinal~z! and transverse (x,y)
coordinates are, respectively, measured in units of a suit
diffraction lengthl dif and of a characteristic transverse size
the envelope. The coordinatet is the retarded time scaled t
the parameterTAl dif / l dis, whereT is the temporal duration o
the envelope andl dis is a characteristic GVD length. Diffrac
tion parametersa1,2 are positive while GVD parametersg1,2
can have either sign. Rescalingx,y,t once more one can
always choosea1 /a2 and ug1u/ug2u to be any convenien
constants. The parameterb measures the relative strength
cross-phase modulation compared to self-phase modula
The nonlinearity was chosen to be self-focusing because
low we are interested in the dynamics of bright solita
waves.

Equations~1! describe a variety of physical situations b
we will focus here on their application to propagation
electromagnetic~em! waves. Using a circular polarizatio
basis to describe propagation of quasimonochromatic
waves in isotropic dielectric materials leads to Eqs.~1!,
where, in such a case,E1 andE2 are envelopes of the left
and right- polarized components@24#. The diffraction and
GVD parameters can be taken asa1,250.5, g1,25g560.5,
-
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(3) @24#, where x i jkl
(3) is the nonlinear

susceptibility tensor. For example,b52 for the nonresonan
electronic nonlinearity andb57 for the nonlinearity due to
molecular orientation@24#. For em waves propagating in a
isotropic plasma,b strongly depends on the ratio betwee
the frequency of the em wave and the characteristic elec
plasma frequency, and it can have either sign@15#. Equations
~1! can also be applied to describe interaction of circula
polarized waves in waveguides filled with linearly isotrop
material, such as, e.g.,CS2 liquid @25#; in the opposite situ-
ation linear coupling betweenE1 andE2 should be incorpo-
rated in the model.

Counterpropagation of scalar waves in Kerr media ob
Eqs. ~1! with b determined by the wavelength-scale refra
tive index gratings written by the interference pattern@17#.
The value ofb in this situation is directly linked with diffu-
sion which washes out the grating making 1<b<2 (b52
for zero diffusion!. Envelopes of incoherent copropagatin
waves in Kerr media also obey Eqs.~1! with b52 @16#. In
these two situations the group velocity difference of t
wave envelopes, which is not explicitly written in Eqs.~1!,
can be removed by a suitable phase shift.

The limiting caseb→1` describes a situation with zer
self-modulation effects. This approximates the so-called c
cading limit of nondegenerate three-wave mixing in the q
dratically nonlinear media@26#. Therefore one can expec
that for large enoughb MI of the solitary solutions of Eqs.
~1! should be equivalent to the MI of the three-wave solito
@23# but that it should well be different for the relativel
small b.

Because the discussion of a wide range ofb values is
more realistic in the context of the interaction of the circ
larly polarized waves, below we mainly use terminolo
which is appropriate to this case.

III. MODULATIONAL INSTABILITY OF SOLITONS.
GENERAL FORMULATION OF THE PROBLEM

The primary target of the present paper is understand
of the instabilities of the ground state, i.e., nodeless, spati
localized solutions of Eqs.~1! under the action of the
t-dependent perturbations. These solutions are well kno
see, e.g.,@27–33# and references therein. Here, we restr
ourselves to the situation when the solitary waves are st
for ] t50. Therefore we chooseb.0, because it ensure
absence of the ‘‘splitting’’ instability@30#, and¹W '5 iW]x , to
avoid collapse@7,8,34#.

It is important for the following to summarize relevan
symmetry properties of Eqs.~1! with suppressed time deriva
tives (] t50). Invariance with respect to the two-parame
gauge transformation

~E1 ,E2!→~E1eif1,E2eif2! ~2!

leads to conservation of the energiesQ1,25*dxuE1,2u2 or
their equivalent combinations. There are also invarian
with respect to transverse translation and Galilean trans
mation,

E1,2~x!→E1,2~x1x0!, ~3!
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PRE 60 1021MODULATIONAL INSTABILITY OF BRIGHT SOLITAR Y . . .
E1,2~x!→E1,2~x2vz!eiv(x2vz/2). ~4!

f1 , f2 , x0, and v are free parameters. Although we u
below the fact of the presence of the translational and G
ilean symmetries, we do not need explicit expressions for
associated integrals of motion, which are linear moment
and ‘‘center of mass,’’ see, e.g.,@9#.

Symmetry property~2! indicates that the solitary solution
can be presented in the form

E1,2~x,z!5A1,2~x!eik1,2z. ~5!

A1,2(x) are real functions obeying the system of ordina
differential equations

1

2
]x

2A1,25k1,2A1,22~A1,2
2 1bA2,1

2 !A1,2. ~6!

Exponential localization of the solitons requiresk1,2.0. Ac-
tually one of these parameters can always be scaled a
which means that fixing one of them and varying the othe
the whole region of the solitary wave existence one will ca
ture all possible situations. However, for convenience of a
lytical calculations it is better to keep them both.

To study MI we seek solutions of Eq.~1! in the form of
spatial solitons weakly modulated in time at frequencyV
>0,

E1,2~x,z!5$A1,2~x!1@U1,2~x,z!

1 iW1,2~x,z!#cosVt%eik1,2z1 if1,2. ~7!

Presenting a solution of the linearized real system for
small perturbationsUm ,Wm in the formUm;um(x)elz and
Wm;wm(x)elz we obtain the following eigenvalue problem
~EVP!:

~L̂11gV2Î !uW 52lwW ,
~8!

~L̂01gV2Î !wW 5luW ,

whereuW 5(u1 ,u2)T, wW 5(w1 ,w2)T, and Î is the identity op-
erator.L̂0 and L̂1 are

L̂05S D̂1 0

0 D̂2
D , ~9!

L̂15S B̂1 22bA1A2

22bA1A2 B̂2
D , ~10!

where D̂1,252 1
2 ]x

21k1,22A1,2
2 2bA2,1

2 and B̂1,252 1
2 ]x

2

1k1,223A1,2
2 2bA2,1

2 .
By means of simple transformation one can reduce E

~8! to the following two EVPs for real and imaginary parts
the perturbations:

~L̂01gV2Î !~L̂11gV2Î !uW 52l2uW , ~11!

~L̂11gV2Î !~L̂01gV2Î !wW 52l2wW . ~12!
l-
e

m

ay,
n
-
a-

e

P

EVPs ~11!, ~12! are adjoint to each other. Therefore the
have identical spectra and in case of instability the imagin
and real parts of perturbations grow with the same rates
answer the stability question it is thus enough to study o
one of the EVPs, and we concentrate below on the EVP~12!.

Let us suppose that (k1,21gV2)5j1,2>0. Then, gener-
ally, l2P(2`,2lg

2) is a continuous part of the spectru
with unbounded eigenfunctions, wherelg5min(j1,j2). For
particular cases whenL̂1 becomes a diagonal operator th
continuum splits into two independent bands, (2`,2j1,2

2 ),
corresponding to the unboundedness ofw1(x) and w2(x),
respectively. Eigenvalues which do not belong to the c
tinuum constitute the discrete part of the spectrum and h
bounded eigenfunctions. Stable eigenmodes with eigen
ues obeying2lg

2,l2,0 are called ‘‘gap modes.’’ Any
other mode of the discrete spectrum, i.e., any eigenm
with l2 complex or positive, renders the soliton unstable
j1,0 and/orj2,0, the gap is closed,lg50.

The procedure which we mainly follow to study stabili
of different types of solitary solutions consists of three ba
steps. First, using analytical and numerical analysis we id
tify the discrete spectrum of EVP~12! for V50. Second, we
develop perturbation theory for the neutral eigenmodes in
low-frequency limit,V!1. Third, we numerically build con-
tinuations of all discrete eigenvalues into the region of fin
positive V. We also allow for possible splitting of discret
eigenvalues from the edge of the continuum, but this w
never actually observed.

IV. INSTABILITIES OF CIRCULARLY POLARIZED
AND MANAKOV SOLITONS

The single-wave solitons of Eqs.~6! corresponding to
right- and left-circular-polarized em waves are

A1~x!5A2k1sechA2k1x, A250, ~13!

A150, A2~x!5A2k2sechA2k2x. ~14!

For these solutions, EVP~12! separates into two independe
scalar problems. Considering, for example, the stability o
soliton with A1Þ0 we get

~N̂11gV2!~N̂01gV2!w152l2w1 , ~15!

S 2
1

2
]x

21k21gV22bA1
2D 2

w252l2w2 , ~16!

whereN̂052 1
2 ]x

21k12A1
2 , N̂152 1

2 ]x
21k123A1

2 .
The operator on the left-hand side of Eq.~16! has a non-

negative spectrum therefore corresponding values ofln
2 (n

50,1,2,3, . . . ) must be nonpositive, which means the a
sence of the unstable eigenmodes. In fact eigenvalue p
lem ~16! can be solved analytically, see, e.g.,@28,35#. The
eigenvalues are

ln
252S k21gV22

k1

4
@A8b1122n21#2D 2

. ~17!

Equation~15! is exactly an EVP arising in the theory o
MI of solitons in a single NLS equation and details of i
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1022 PRE 60DMITRY V. SKRYABIN AND WILLIAM J. FIRTH
analytical and numerical investigations can be found
@6,8,21#. For the sake of completeness and comparison w
MI of the other types of solutions we summarize the m
results here.

The discrete spectrum of operatorN̂1N̂0 consists of two
neutral eigenmodes which can be readily identified by app
ing infinitesimal phase and Galilean transforms to solit
wave solution. These modes arew1f1

5A1 and w1v5xA1.

Infinitesimal translations and variations ofk1 generate two
neutrally stable modes of the adjoint operatorN̂0N̂1 which
areu1x5]xA1 andu1k1

5]k1
A1. These modes obey the iden

tities N̂0w1f1
50, N̂0w1v52u1x , N̂1u1k1

52w1f1
, N̂1u1x

50.
Following @21# we assumeV2!1 and substitute the

asymptotic expansions

w15~w1
(0)1V2w1

(1)1••• ! ~18!

and

l25V2~l (1)21V2l (2)21••• ! ~19!

into Eq. ~15!. In the first two orders we haveN̂1N̂0w(0)50
andN̂1N̂0w(1)52l (1)2w(0)2g(N̂01N̂1)w(0). The solution
in leading order isw1

(0)5Cf1
w1f1

1Cvw1v , whereCf1
, Cv

are constants. Orthogonality propertieŝw1f1
,u1x&

5^w1v ,u1k1
&50 ~here and beloŵ fW ,gW &5(m* dx fmgm) re-

sult in the independence of the branches produced by
phase and Galilean neutral modes. ThereforeCf1

andCv are
in fact independent constants. The solvability condition
the first order problem gives

lf1

(1)252g
Q1

]k1
Q1

54gk1 , ~20!

lv
(1)2522g

^u1x ,u1x&
Q1

52
4

3
gk1 . ~21!

Equations~20!, ~21! indicate onset of instability for eithe
sign of g. However, the character of the instability depen
on the sign ofg. For anomalous GVD (g.0) the spatially
symmetric eigenmode becomes unstable, leading to clu
ing of the soliton stripe into filaments~neck MI!. For normal
GVD (g,0) an excitation of the antisymmetric eigenmo
leads to spatial symmetry breaking and bending of the s
tary stripe along the temporal coordinate~snake MI!. The
period of the modulations is approximately equal
2p/Vmax, whereVmax is the maximally unstable frequency

Typical dependencies of the MI growth rates vsV are
presented in Fig. 1. The neck instability disappears atVf1

5A3k1 /g where w150 and u15sech2A2k1x. For V
.Vf1

the corresponding eigenmode becomes a gap m

Note that forg.0 the gap becomes wider with increasing
V. The snake instability disappearance is very difficult
track numerically because the corresponding eigenmode
velops oscillating tails and becomes weakly localized, so
a larger number of grid points is required. However, o
numerical analysis clearly indicates that the branch of sn
n
th
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MI does not disappear stepwise at the point where the ga
closed,Vg5A2k1 /g, as was suggested in Ref.@6#, but con-
tinues beyond this point and probably reachesl250 at some
largerV.

The nonlinear stage of MI is also perfectly analogous
that in the single NLS. Filaments, formed as the result of
neck MI development, collapse to a singularity during fu
ther propagation@7,8#. The snake MI leads to soliton sprea
ing due to unbalanced action of the self-focusing nonline
ity and normal GVD@8#. The second fieldE2 is not affected
by the discussed instabilities, because of the incoherent
ture of the coupling betweenE1 andE2.

In the special caseb51, a15a2, and g15g2 Eqs. ~1!
are invariant under the arbitrary rotations in the (E1 ,E2)
plane,E1,2→cosqE1,26sinqE2,1. This leads to a new pa
rametrization of the ground-state solitons. These are usu
called Manakov solitons@36# and they are given by the so
lutions of Eqs.~6! with k1,25k:

A15cosuA~x!, A25sinuA~x!. ~22!

Here the angleu is a new free parameter characterizing t
polarization angle, andA(x)5A2ksechA2kx. Because of
the rotational invariance, Manakov solitons with differe
polarizations are equivalent and their MI is indepent of t
polarization angle. Therefore one can always setu50, and
then the corresponding EVP coincides with Eqs.~15!, ~16!.

V. INSTABILITIES OF LINEARLY AND ELLIPTICALLY
POLARIZED SOLITONS „bÞ1…

A. Soliton family and associated neutral modes

To study solitons of an arbitrary polarization forbÞ1,
i.e., A1Þ0 and A2Þ0, it is more convenient to introduc
absolute, w5 1

2 (f11f2), and relative, c5 1
2 (f12f2),

phases. The corresponding integrals of motion are the t
energy Q5Q11Q2 and energy unbalanceQu5Q12Q2.
Associated soliton parameters arek5 1

2 (k11k2) and d
5 1

2 (k12k2).

FIG. 1. Instability growth rates of the circularly polarized so
ton vsV, k151. Solid~dotted-dashed! line is for neck~snake! MI,
g50.5 (g520.5).
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PRE 60 1023MODULATIONAL INSTABILITY OF BRIGHT SOLITAR Y . . .
For d50 there is an obvious and well known analytic
solution of Eqs.~6! @9,28–33#,

A1,2~x!5A~x!5A 2k

11b
sechA2kx, ~23!

corresponding to a linearly polarized soliton. Using nume
cal solution of Eq.~6! one can verify that forbÞ1 the exact
solution ~23! belongs to the family of the solitary solution
parametrized byk andd.

Using Eq. ~17! for n50, V50 and its analog for the
solution~14! we conclude that for fixed values ofk andb, a
family of ground-state coupled solitary solutions of Eqs.~6!
exists fordP(2dc ,dc), where

dc5kU124b1A118b

314b2A118b
U . ~24!

Analogs of Eqs.~24! have been derived before in a numb
of papers using different methods, see, e.g.,@9,27,32#. Ex-
pression under the modulus in Eq.~24! changes its sign from
plus to minus onceb changes fromb,1 to b.1. It follows
that forb,1 the family of the elliptically polarized soliton
splits from the familyA250 (A150) of the circularly po-
larized ones atd5dc (d52dc) and this is vice versa fo
b.1. Continuous variation ofd from 2dc to dc for fixed k
and b,1 (b.1) results in monotonic decay ofQ2 (Q1)
from its maximal valueQ1 (Q2) down to zero and in
growth of Q1 (Q2) from zero up toQ1 (Q2), whereQ6

52A2(k6dc). Therefore, we can make an important po
for the following discussion: forb,1, ]dQu.0 and forb
.1, ]dQu,0. Numerically built dependencies ofQu vs d
for different values ofb are presented in Fig. 2.

Consider now the main spectral properties of the ellip
cally polarized solitons forV50 and bÞ0,1. Phase and
Galilean symmetries generate three neutral eigenmode
the EVP ~12!, they arewW w5(A1 ,A2)T, wW c5(A1 ,2A2)T,
andwW v5x(A1 ,A2)T. Infinitesimal variations ofk andd, and
translational symmetry generate neutral modes of the ad
problem ~11!: uW k5]k(A1 ,A2)T, uW d5]d(A1 ,A2)T, and uW x

FIG. 2. Energy unbalancingQu vs d, k51.
-

t

-

of

nt

5]x(A1,A2)
T. These six modes obey the following identitie

L̂0wW w50, L̂0wW c50, L̂0wW v52uW x , L̂1uW k52wW w , L̂1uW d5

2wW c , L̂1uW x50.
For b50 Eqs. ~1! separate into two independent NL

equations. The independence of the two fields results in
ditional translational and Galilean symmetries characteriz
freedom of the relative transverse translation and motion
the two waves. Therefore EVPs~11! and ~12! have addi-
tional neutral modes uW dx5]x(A1 ,2A2)T, wW dv5x(A1 ,
2A2)T. As numerical solution for 0,b,1 shows, the cor-
responding eigenvalue produces a stable branch of the
crete spectrum. Forubu!1 an approximate expression fo
this eigenvalue can be readily found@29,30#, ldv

2 5
264b/15. Excitation of the corresponding eigenmode resu
in position oscillations of the soliton upon its propagati
@31#. When b→1 this eigenmode disappears into the co
tinuum @31#.

B. Asymptotic stability analysis „V2!1…

Now assuming thatb@V2 we can use the asymptoti
techniques described in the preceding section to conti
zero-eigenvalue modes into the regionV2!1. Making sub-
stitutions

wW 5~wW (0)1V2wW (1)1••• ! ~25!

and of Eq.~19! into Eq. ~12! we get in the first two orders
L̂1L̂0wW (0)50 and L̂1L̂0wW (1)52l (1)2wW (0)2g(L̂01L̂1)wW (0).
Solution in the leading order iswW (0)5CwwW w1CdwW d

1CvwW v . As in the preceding subsection one can show t
the branches produced by the two-phase modes on the
hand and by the Galilean mode on the other are independ
The solvability condition of the first order problem for th
Galilean mode gives

lv
(1)2522g

^uW x ,uW x&
Q

, ~26!

which implies snake instability forg,0. When d50,
lv

(1)2524gk/3, cf. Eq.~21!.
For the two-phase modes the solvability condition resu

in a quadratic equation forl (1)2,

al (1)41bl (1)21c50, ~27!

where

4a5]kQu]dQ2]kQ]dQu ,

2b5gQ~]kQ1]dQu!2gQu~]kQu1]dQ!,

c524g2Q1Q2 .

Corresponding values ofCw and Cc are linked through the
equality

Cw

Cc
5

2gQ2l (1)2]dQu

l (1)2]dQ22gQu

,
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where l (1)2 is the corresponding root of Eq.~27!. In the
general case expressions for the roots of Eq.~27! cannot be
analyzed analytically, but it is already clear that four sy
metric neck type eigenmodes exist and either two or al
them may be responsible for instability.

If d50 then ^wW w ,uW d&5^wW c ,uW k&50 and thereforewW w

and wW c eigenmodes produce independent branches of
discrete spectrum. This results in independence betweenCw

andCc and simplifies formulas for the associated eigenv
ues:

lw
(1)252g

Q

]kQ
54gk, ~28!

lc
(1)252g

Q

]dQu
52gk f ~b!. ~29!

Here f (b)5@* sechxg(x,b)dx#21 and function g obeys
@]x

22112(32b)/(11b)sech2x#g5sechx. f (b) changes
its sign from plus to minus whenb passes through unity, se
Fig. 3. Alternatively, Eq.~29! can be rewritten aslc

(1)2

52gQ1 /]dQ1, cf. Eq. ~4! in @23#.
The lw

(1)2 eigenvalue and associated neutral modewW w are
linked to the symmetry in the absolute phasew and have
their analogies in the spectral problem for single-wave s
tons described in the preceding section, see Eq.~20!. The
lc

(1)2 eigenvalue and neutral modewW c are novel. They can
be directly attributed to the symmetry in the different
phasec. This branch of the discrete spectrum generates
stability for normal GVD (g,0) if b.1 and for anomalous
GVD if b,1, see Figs. 4, 6. Thus, the asymptotic analy
indicates that forb.1, g,0 neck and snake instabilitie
coexist, and forb,1, g.0 two different types of neck
instability coexist. Numerical evaluation of the roots of E
~27! shows that the same conclusions hold also fordÞ0,
throughout the whole existence region of the family of ell
tically polarized solitons. Solving the EVP~12! numerically,
we find that in the low-frequency limit the instability growt
rates match those predicted by our perturbation theory wi
a few percent up toV.0.5. Numerical investigation~for
more details see below! also shows that apart from the thre

FIG. 3. Functionf (b), see Eq.~29!.
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instabilities discussed in the preceding subsection, a fo
MI associated with continuation ofwW dv into the region of
bÞ0, VÞ0 also exists. Analytical treatment of this inst
bility is also possible, but it will not be pursued here, becau
the corresponding MI branch is never dominant.

Let us first discuss in general terms the physical mean
of all the different types of the instabilities in the simp
situation with zero imbalancing (d50), and only then will
we proceed with details of the numerical analysis.

C. Instability-induced polarization dynamics

All eigenmodes of the EVP~12! are two-component vec
tors, whose first and second components are responsibl
the spatial form of modulations of the fieldsE1 and E2,
respectively. The eigenmodeswW w and wW v corresponding to
the variations of the absolute phasew and of the absolute
velocity v of the coupled solitons have first and second co
ponents which are in phase for any value ofx. This property
holds throughout the whole region of existence of the as
ciated branches of the discrete spectrum. Therefore an e
tation of these eigenmodes is not accompanied by the br
ing of the polarization of the initial state. In contrast, th
eigenmodes linked withwW c and wW dv neutral modes, or in
other words with variations of the relative phasec and the
relative velocitydv, have antiphased first and second co
ponents. Therefore their excitation does lead to polariza
symmetry breaking. In particular, one should expect that
stabilization of the eigenmode associated with the rela
phasec will result in breaking of the linearly polarized soli

FIG. 4. Instability growth rates, spatial profiles of the solita
solutions and of the unstable eigenmodes forb,1, g520.5.
Dashed-dotted~dash-dot-dot-dot! lines correspond to the in-phas
~antiphase! snake MI.~a! Growth rates vsV, b50.3. Thin ~thick!
lines correspond tok51, d50, Q.4.04, Qu50 (k51.155, d
50.5, Q.4.04, Qu.2.18). ~b! Maximal growth rate vsb. Thin
~thick! lines correspond tod50 (d50.5). ~c! Components of the
eigenmode corresponding to the in-phase snake MI,b50.3, d
50, V51. ~d! Components of the eigenmode corresponding to
antiphase snake MI,b50.3, d50, V50.92.
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ton stripe into a chain of circularly polarized clusters, whe
neighboring clusters have opposite~left and right! polariza-
tions. The same conclusions are obviously valid for the r
parts of the perturbations.

Note here, that by direct substitution of the linearly pola
ized solution Eq.~23! into the EVPs~11!, ~12! one can easily
show that the eigenvalues of the eigenmodes with in-ph
first and second components are independent ofb. This
means physically that in-phase MI is insensitive to the re
tive strength of self- and cross-phase modulations.

D. Numerical results for normal GVD „g<0…

We start a description of our numerical results with d
cussion of the normal GVD case. We found two snake ins
bilities for b,1, see Fig. 4. One of them corresponds to
in-phase snaking of both fields, see Fig. 4~c!, and its growth
rate in the low-frequency limit is given by Eq.~26!. The
other one corresponds to the antiphase snaking, see Fig.~d!.
Examples of the growth rate dependencies vsV and details
of the antiphase snaking appearance are presented in
4~a! and Fig. 5, respectively. Dependencies of the maxim
instability growth rates onb are presented in Fig. 4~b!. We
found that in-phase snaking dominates antiphase snakin
all values ofd and b. For b51 the antiphase snake mod
disappears inside the continuum and does not appear a
for all b.1.

The dominant role of the in-phase snake instability me
that breaking of the polarization state imposed by the ini
conditions is unlikely to happen upon propagation. Introd
ing imbalancing for a fixed total energy enhances this do
nance, see Fig. 4~a!. Thus, whenb,1, the linearly polarized
solitons are more stable than any other state of polarizati

The antiphase neck MI associated with the relative ph
c appears forb.1, see Eq.~29! and Fig. 6~b!. The in-phase
snake instability obviously also exists, see Eq.~26! and Figs.
6~c! and 6~d!. The in-phase snake MI dominates the a
tiphase neck for 1,b,bsn and vice versa forb.bsn, see
Fig. 7, where the cross-over valuebsn depends weakly ond.
This fact can also be seen from the comparison of the
turbative results ford50. According to Eqs.~28!, ~29! and
Fig. 7 the neck instability dominates the snake in the lo

FIG. 5. Eigenvalues corresponding to the antiphase snake M
V for several choices ofb: k51, d50, g520.5.
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frequency limit starting fromb.3.55. Numerical stability
analysis gives thatbsn.3.47 atV5Vmax for d50. Introduc-
ing imbalancing always leads to the suppression of both
stabilities, see Figs. 6~a!, 6~c!, and 7. Thereforethe circular-
polarized soliton is most stable for a given energy.

In analogy with MI of circularly polarized solitons fo
normal GVD, the neck and snake unstable eigenmodes
come weakly confined and develop oscillating tails asV

vs

FIG. 6. Instability growth rates, spatial profiles of the solita
solutions and of the unstable eigenfunctions forb.1, g520.5.
Dash-dot~dash! lines correspond to in-phase snake~antiphase neck!
MIs. ~a! Growth rates vsV, b52. Thin ~thick! lines correspond to
k51, d50, Q51.75, Qu50 (k50.93, d50.2, Q51.75, Qu5
20.91). ~b! Components of the eigenmode corresponding to
phase snake MI,b52, d50.2, V50.8. ~c! Growth rates vsV,
b57. Thin ~thick! lines correspond tok51, d50, Q.0.68, Qu

50 (k50.97, d50.2, Q.0.68, Qu.20.16). ~d! Components of
the eigenmode corresponding to antiphase neck MI,b57, d
50.2, V51.

FIG. 7. Maximal growth rates of the in-phase snake~dashed-
dotted line! and the antiphase neck~dashed line! MIs vs b for b
.1, g520.5. Thin ~thick! lines correspond tod50 (d50.5).
Cross-over occurs atbsn.3.47 ford50 andbsn.4.04 ford50.5.
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1026 PRE 60DMITRY V. SKRYABIN AND WILLIAM J. FIRTH
increases beyond the point where the gap is closed,lg50.
To test our linear stability analysis and study the nonl

ear evolution we performed a series of computer simulati
of Eqs. ~1! with initial conditions in the form of a soliton
stripe perturbed by spatiotemporal white noise of the orde
a few percent. Typical simulation results are presented
Figs. 8–,10. Forb,bsn we observed in-phase snaking of th
stripe along the temporal dimension, see Fig. 8. Forb.bsn
the soliton stripe breaks in such a way as to form the in
leaved intensity peaks ofE1 andE2, see Fig. 9, as expecte
when the out-of-phase neck MI is dominant. The spatiote
poral patterns formed at the initial stage of MI finally spre
because of the unbalanced action of the normal GVD
self-focusing nonlinearity. Forb.bsn we observed compe
tition between the neck and snake MIs, see Fig. 10. In F
10(b1) and 10(b2) one can clearly see that at the interme
ate stage of MI the typical in-phase snake pattern is su
imposed on the antiphase neck pattern.

Thus, we conclude that in the media with normal GV
spatial soliton stripes perfectly develop snake MI witho
polarization symmetry breaking ifbP(0,bsn) and neck MI
with polarization symmetry breaking ifbP(bsn,1`).

E. Numerical results for anomalous GVD„g>0…

There are two neck MIs in this case forb,1, see Fig. 11.
One of them is associated with the absolute phasew and
corresponds to the in-phase neck MI. The other one is a
ciated with the relative phasec and corresponds to the an
tiphase neck MI. The in-phase MI dominates the antiph
one for any value ofd andb, which means conservation o
the polarization state imposed by the initial conditions. No
zero imbalancing for fixed total energy leads to the growth

FIG. 8. Development of the in-phase snake MI forb52, k
51, d50, g520.5. (a1,2) uE1,2u for z512; (b1,2) uE1,2u for z
514.7.
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the in-phase MI and to the suppression of the antiphase
see Figs. 11~a! and 11~b!. For b.1 only in-phase instability
exists, but now imbalancing leads to the suppression of
instability, see Fig. 12. Presence of these instabilities ag
with the predictions of low-frequency analysis, see Eqs.~28!,
~29! and Figs. 2, 3. A typical result of the numerical sim
lation of the neck instability development is shown in Fi
13. Note that the numerically attainable propagation dista
was limited by the distance at which the most intense fi
ments formed at the initial stage of MI collapse to singula
ties.

Cutoff frequencies where the neck MIs disappe
can be found analytically ford50. Growth rate of the
in-phase MI becomes zero atV5A3k/g in full analogy
with the single NLS equation, see Sec. IV. The antipha
MI disappears atV25k(D2B)/(2g) having wW 50 and
u1,25(sechA2kx)(B21)/2, here D5(1125b)/(11b), B
5A(2527b)/(11b).

Thus, in the media with anomalous GVD the spatial so
ton stripe always develops neck MI without polarizatio
symmetry breaking and filamentary structure formed dur

FIG. 9. Development of the antiphase neck MI forb57, k
51, d50, g520.5. (a1,2) uE1,2u for z58.4; (b1,2) uE1,2u for z
510.2; (c1,2) uE1,2u for z512.6.
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FIG. 10. Competition between the in-phase snake and antip
neck MIs:b53.47, k51, d50, g520.5. (a1,2) uE1,2u for z59;
(b1,2) uE1,2u for z512.

FIG. 11. Instability growth rates, spatial profiles of the solita
solutions and of the unstable eigenfunctions forb,1, g50.5. Full
~dash! lines correspond to in-phase~antiphase! neck MIs. ~a!
Growth rates vsV, b50.3. Thin ~thick! lines correspond tok
51, d50, Q.4.04, Qu50 (k51.155, d50.5, Q.4.04, Qu

.2.18). ~b! Maximal growth rate vsb. Thin ~thick! lines corre-
spond tod50 (d50.5). ~c! Components of the eigenmode corr
sponding to in-phase snake MI,b50.3, d50, V51.5. ~d! Com-
ponets of the eigenmode corresponding to antiphase snake Mb
50.3, d50, V50.9.
this process collapses upon propagation. Detailed stud
collapse in coupled NLS equations is outside the scope
this paper. Some details on this issue can be found in@34#.

VI. DISCUSSION

It is interesting to compare MI of solitons with results o
MI of cws @13#, which can be easily recovered from Eqs.~6!,
~11!, ~12! setting]x

250. For simplicity we again consider th
case of the linear polarization,E1,25Ak/(11b)eikz. Then
corresponding eigenvalues arelw

25gV2(2k2gV2) and
lc

25gV2@2k(12b)/(11b)2gV2#. For normal GVD,lc
2

can be positive only forb.1. For anomalous GVD,lw
2

generates instability for anyb andlc
2 only for b,1. Thus,

as one could expect, neck instabilities of solitons related
the phase symmetries have analogies for cws. Snake in
bilities are obviously absent for cws, which is the main d
ference between the dynamics of spatially confined solit
and infinitely extended cws. Namely, in the case of norm
GVD, cws are modulationally stable forb,1 and unstable
for b.1 ~demonstrating polarization symmetry breaking!.
Solitons are snake unstable in this situation for anyb and
this instability does not involve changes in the polarizati
state. However, starting from a critical value ofb5bsn the
snake instability becomes suppressed by the neck one, w
is analogous to instability of cw. This instability does lead
polarization symmetry breaking. In particular, a linearly p
larized soliton breaks, due to this instability, into the chain
circularly polarized clusters. Because snake instability le

se

FIG. 12. In-phase MI growth rates forb.1, g50.5.~a! Growth
rates vsV, b52. Thin ~thick! lines correspond tok51, d50,
Q.4.04, Qu50 (k51.155, d50.5, Q.4.04, Qu.2.18). ~b!
Maximal growth rate vsb. Thin ~thick! lines correspond tod50
(d50.5).

FIG. 13. Development of the in-phase neck MI forb52, k
51, d50, g50.5. (a1,2) uE1,2u for z54.6. With further increasing
of z most intense filaments develop collapse.
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to spatial symmetry breaking and neck MI does not,
change in MI of solitons atb5bsn can be interpreted asa
transition from spatial symmetry breaking to polarizatio
symmetry breaking.

In the limit situationb@1 self-phase effects are negl
gible compared to cross-phase ones and development o
in-phase and antiphase neck MIs can be qualitatively
plained using Fermat’s principle. Due to MI development t
effective refractive index forE1 and E2 fields gets modu-
lated through theXPM mechanism with period 2p/Vmax.
This results in temporal cross-defocusing of filaments in m
dia with normal GVD and in cross-focusing for anomalo
GVD. Thus, in the case of normal GVD, an interleaved p
tern of the intensity peaks ofE1 and E2 fields should be
preferable because it enables each field to ‘‘see’’ a refrac
index that increases to its peak, i.e., one that is in accord
Fermat’s principle. This is clearly verified in Fig. 9. Th
same arguments lead to the conclusion that a pattern wit
intensity peaks coincident is preferable for anomalous GV

Considering the possibility of experimental observatio
of predicted phenomena, we have to say that a diffracti
induced MI of solitonlike stripe, which is formally equiva
lent to the case of anomalous GVD, is probably easies
observe. However, it is less interesting at the same time
cause it is perfectly analogous to MI of cws and it is n
accompanied by any polarization effects. More interest
dynamics is expected in media with normal GVD. In fa
experimental observation of temporal splitting induced
normal GVD of spatially confined pulses in a self-focusi
medium was recently reported in@37#. However, transverse
and polarization effects, which, according to our resu
should play an important role, were not studied during t
experiment. Numerical studies@37# presented to support th
experimental results were restricted by scalar approxima
and radial geometry.

The rescaled instability growth ratel as a function of the
modulational frequencyV can be related to physical unit
using the formulas
e-
r

th

s

e

the
x-
e

-

-

e
th

all
.

s
-

to
e-
t
g
,
y

,
s

n

lph5
l

4kw2k
, Vph

2 5
gV2

2kk9w2k
.

Herelph andVph are the instability growth rate and modu
lational frequency in physical units,k is the wave vector,w is
the beam width,k95]v

2 k. k andg are the same paramete
which have been used throughout the text. For example,
radiation at 1mm propagating in an AlGaAs planar wave
guide k9.210223 s2/m @38# and for typical soliton trans-
verse sizew.50 mm @39# we get lph.l/(k35 cm) and
Vph

2 .V2/(k310225 s2). For experiments with fused silica
at wavelength 830 nm, see second of Refs.@37#, k9.
210226 s2/m andVph

2 .V2/(k310228 s2).

VII. SUMMARY

We have analyzed and described dispersive MI of fa
lies of nodeless spatial solitons in the system of the t
incoherently coupled NLS equations. Considering coup
soliton states, we have established the existence of the
branches of instabilities, which are linked to the symmetr
in the absolute and relative phases and in the absolute
relative motions of solitons. We gave a physical interpre
tion of our results describing GVD-induced polarization d
namics. In particular we found that in media with norm
GVD the MI-induced spatial symmetry breaking in the tran
verse plane changes to the polarization symmetry brea
when the relative strength of the cross-phase modulation
ceeds a certain threshold value. In media with anomal
GVD, MI results in breaking of spatial solitons into sp
tiotemporal clusters which collapse upon further propa
tion. This is not followed by either spatial or polarizatio
symmetry breaking.
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